
P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 July 15, 2007 11:45

CHAPTER 5

Combinatorial Algorithms
for Market Equilibria

Vijay V. Vazirani

Abstract

Combinatorial polynomial time algorithms are presented for finding equilibrium prices and allocations
for the linear utilities case of the Fisher and Arrow–Debreu models using the primal-dual schema and
an auction-based approach, respectively. An intersting feature of the first algorithm is that it finds an
optimal solution to a nonlinear convex program, the Eisenberg-Gale program.

Resource allocation markets in Kelly’s model are also discussed and a strongly polynomial
combinatorial algorithm is presented for one of them.

5.1 Introduction

Thinkers and philosophers have pondered over the notions of markets and money
through the ages. The credit for initiating formal mathematical modeling and study
of these notions is generally attributed to nineteenth-century economist Leon Walras
(1874). The fact that Western economies are capitalistic had a lot to do with the over-
whelming importance given to this study within mathematical economics – essentially,
our most critical decision-making is relegated to pricing mechanisms. They largely de-
termine the relative prices of goods and services, ensure that the economy is efficient,
in that goods and services are made available to entities that produce items that are
most in demand, and ensure a stable operation of the economy.

A central tenet in pricing mechanisms is that prices be such that demand equals
supply; that is, the economy should operate at equilibrium. It is not surprising therefore
that perhaps the most celebrated theorem within general equilibrium theory, the Arrow–
Debreu Theorem, establishes precisely the existence of such prices under a very general
model of the economy. The First Welfare Theorem, which shows Pareto optimality of
allocations obtained at equilibrium prices, provides important social justification for
this theory.

Although general equilibrium theory enjoyed the status of crown jewel within math-
ematical economics, it suffers from a serious shortcoming – other than a few isolated
results, some of which were real gems, e.g., Eisenberg and Gale (1959) and Scarf

103

P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 July 15, 2007 11:45

104 combinatorial algorithms for market equilibria

(1973), it was essentially a nonalgorithmic theory. With the emergence of new markets
on the Internet, which already form an important part of today’s economy and are pro-
jected to grow considerably in the future, and the availability of massive computational
power for running these markets in a distributed or centralized manner, the need for
developing an algorithmic theory of markets and market equilibria is apparent. Such
algorithms can also provide a valuable tool for understanding the repercussions of
technological advances, new goods or changes to the tax structure on existing prices,
production, and consumption.

A good beginning has been made over the last 5 years within algorithmic game
theory, starting with the work of Deng et al. (2002). However, considering the fact that
markets were an active area of study for over a century within mathematical economics,
it is safe to say that we have only scratched the surface of what should be a rich theory.

Irving Fisher (see Brainard and Scarf, 2000) and Walras (1874) gave two fundamen-
tal market models that were studied extensively within mathematical economics. The
latter model is also called the exchange model or the Arrow–Debreu model (Arrow and
Debreu, 1954). In this chapter we will present combinatorial algorithms for both these
models for the case of linear utility functions. A second approach that has emerged for
computing equilibria for these models is the efficient solution of convex programs, since
equilibrium alloctions for both these models can be captured via convex programs; see
Chapter 6 for this approach.

Two techniques have been primarily used for obtaining combinatorial algorithms
for these models – the primal-dual schema (Devanur et al. 2002) and an auction-based
approach (Garg and Kapoor, 2004). We will present algorithms for the Fisher and
Arrow–Debreu models, using the first and second techniques, respectively.

An interesting aspect of the first algorithm was the extension of the primal-dual
schema from its usual setting of combinatorially solving, either exactly or ap-
proximately, linear programs, to exactly solving a nonlinear convex program (see
Section 5.5). The latter program, due to Eisenberg and Gale (1959), captures
equilibrium allocations for the linear case of Fisher’s model. Unlike complementary
slackness conditions for linear programs, which involve either primal or dual variables,
but not both, KKT conditions for a nonlinear convex program simultaneously involve
both types of variables. The repercussions of this are apparent in the way the algorithm
is structured.

In a different context, that of modeling and understanding TCP congestion control,1

Kelly (1997) defined a class of resource allocation markets and gave a convex pro-
gram that captures equilibrium allocations for his model. Interestingly enough, Kelly’s
program has the same structure as the Eisenberg–Gale program (see also Chapter 22).

1 In particular, Kelly’s object was to explain the unprecedented success of TCP, and its congestion avoidance
protocol due to Jacobson (1988), which played a crucial role in the phenomenal growth of the Internet and the
deployment of a myriad of diverse applications on it. Fairness is a key property desired of a congestion avoidance
protocol and Jacobson’s protocol does seem to ensure fairness. Recent results show that if Jacobson’s protocol
is run on the end-nodes and the Floyd–Jacobson protocol (Floyd and Jacobson, 1993) is run at buffer queues,
in the limit, traffic flows converge to an optimal solution of Kelly’s convex program, i.e., they are equilibrium
allocations, see Low and Lapsley (1999). Furthermore, Kelly used his convex programming formulation to
prove that equilibrium allocations in his model satisfy proportional fairness (see Section 5.13), thereby giving
a formal ratification of Jacobson’s protocol.

P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 July 15, 2007 11:45

fisher’s linear case and the eisenberg–gale convex program 105

The flow market is of special significance within this framework. It consists of a
network, with link capacities specified, and source – sink pairs of nodes, each with an
initial endowment of money; allocations in this market are flows from each source to
the corresponding sink. The problem is to find equilibrium flows and prices of edges
(in the context of TCP, the latter can be viewed as drop rates at links).

Kelly’s model attracted much theoretical study, partly with a view to designing
next-generation protocols. Continuous time algorithms (though not having polynomial
running time), for finding equilibrium flows in the flow market, were given by Kelly
et al. (1998) (see also Wang et al., 2005, for more recent work along these lines). Soon
after the appearance of Devanur et al. (2002), Kelly and Vazirani (2002) observed that
Kelly’s model esentially generalizes Fisher’s linear case and stated, “Continuous time
algorithms similar to TCP are known, but insights from discrete algorithms may be
provocative.”

With a view to answering this question, a systematic study of markets whose equilib-
ria are captured by Eisenberg-Gale-type programs was undertaken by Jain and Vazirani
(2006). In Section 5.14 we present, from this paper, a strongly polynomial algorithm
for the special case of the flow market when there is one source and multiple sinks.

5.2 Fisher’s Linear Case and the Eisenberg–Gale
Convex Program

Fisher’s linear case2 is the following. Consider a market consisting of a set B of buyers
and a set A of divisible goods. Assume |A| = n and |B| = n′. We are given for each
buyer i the amount ei of money she possesses and for each good j the amount bj of
this good. In addition, we are given the utility functions of the buyers. Our critical
assumption is that these functions are linear. Let uij denote the utility derived by i on
obtaining a unit amount of good j . Thus if the buyer i is given xij units of good j , for
1 ≤ j ≤ n, then the happiness she derives is

n∑

j=1

uijxij .

Prices p1, . . . , pn of the goods are said to be market clearing prices if, after each buyer
is assigned an optimal basket of goods relative to these prices, there is no surplus or
deficiency of any of the goods. Our problem is to compute such prices in polynomial
time.

First observe that w.l.o.g. we may assume that each bj is unit – by scaling the uij ’s
appropriately. The uij ’s and ei’s are in general rational; by scaling appropriately, they
may be assumed to be integral. We will make the mild assumption that each good has
a potential buyer; i.e., a buyer who derives nonzero utility from this good. Under this
assumption, market clearing prices do exist.

It turns out that equilibrium allocations for Fisher’s linear case are captured as op-
timal solutions to a remarkable convex program, the Eisenberg–Gale convex program.

2 See Section 5.13 for a special case of this market and a simple polynomial time algorithm for it.

P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 July 15, 2007 11:45

106 combinatorial algorithms for market equilibria

Before stating the program, it will be instructive to list considerations that would be
useful in deriving such a program.

Clearly, a convex program whose optimal solution is an equilibrium allocation must
have as constraints the packing constraints on the xij ’s. Furthermore, its objective
function, which attempts to maximize utilities derived, should satisfy the following:

� If the utilities of any buyer are scaled by a constant, the optimal allocation remains
unchanged.

� If the money of a buyer b is split among two new buyers whose utility functions are the
same as that of b then sum of the optimal allocations of the new buyers should be an
optimal allocation for b.

The money weighted geometric mean of buyers’ utilities satisfies both these
conditions:

max

(
∏

i∈A

u
ei

i

)1/
∑

i ei

.

Clearly, the following objective function is equivalent:

max
∏

i∈A

u
ei

i .

Its log is used in the Eisenberg–Gale convex program:

maximize
n′∑

i=1

ei log ui

subject to ui =
n∑

j=1

uijxij ∀i ∈ B

n′∑

i=1

xij ≤ 1 ∀j ∈ A

xij ≥ 0 ∀i ∈ B, ∀j ∈ A

(5.1)

where xij is the amount of good j allocated to buyer i. Interpret Lagrangian variables,
say pj ’s, corresponding to the second set of conditions as prices of goods. By the
Karush, Kuhn, Tucker (KKT) conditions, optimal solutions to xij ’s and pj ’s must
satisfy the following:

(i) ∀j ∈ A : pj ≥ 0.
(ii) ∀j ∈ A : pj > 0 ⇒ ∑

i∈A xij = 1.

(iii) ∀i ∈ B,∀j ∈ A : uij

pj
≤

∑
j∈A uij xij

ei
.

(iv) ∀i ∈ B,∀j ∈ A : xij > 0 ⇒ uij

pj
=

∑
j∈A uij xij

ei
.

From these conditions, one can derive that an optimal solution to convex program (5.1)
must satisfy the market clearing conditions.

The Eisenberg and Gale program also helps prove, in a very simple manner, the
following basic properties of equilibria for the linear case of Fisher’s model.

P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 July 15, 2007 11:45

fisher’s linear case and the eisenberg–gale convex program 107

Theorem 5.1 For the linear case of Fisher’s model:
� If each good has a potential buyer, equilibrium exists.
� The set of equilibrium allocations is convex.
� Equilibrium utilities and prices are unique.
� If all uij ’s and ei’s are rational, then equilibrium allocations and prices are also

rational. Moreover, they can be written using polynomially many bits in the length
of the instance.

proof Corresponding to good j there is a buyer i such that uij > 0. By the
third KKT condition,

pj ≥ eiuij∑
j uij xij

> 0.

Now, by the second KKT condition,
∑

i∈A xij = 1. Hence, prices of all goods are
positive and all goods are fully sold.

The third and fourth conditions imply that if buyer i gets good j then j must
be among the goods that give buyer i maximum utility per unit money spent at
current prices. Hence each buyer gets only a bundle consisting of her most desired
goods, i.e., an optimal bundle.

The fourth condition is equivalent to

∀i ∈ B, ∀j ∈ A :
eiuij xij∑
j∈A uijxij

= pjxij .

Summing over all j gives

∀i ∈ B :
ei

∑
j uij xij∑

j∈A uijxij

=
∑

j

pjxij .

This implies

∀i ∈ B : ei =
∑

j

pjxij .

Hence the money of each buyer is fully spent. This completes the proof that
market equilibrium exists.

Since each equilibrium allocation is an optimal solution to the Eisenberg-Gale
convex program, the set of equilibrium allocations must form a convex set.

Since log is a strictly concave function, if there is more than one equilibrium,
the utility derived by each buyer must be the same in all equilibria. This fact,
together with the fourth condition, gives that the equilibrium prices are unique.

Finally, we prove the fourth claim by showing that equilibrium allocations
and prices are solutions to a system of linear equations. Let qj = 1/pj be a new
variable corresponding to each good j and let k be the number of nonzero xij ’s in
an equilibrium allocation. The system will consist of k + l equations over k + l

unknowns, the latter being the n qj ’s and the k the nonzero xij ’s. The equations are
corresponding to each good j , the equality given by the second KKT condition,

P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 July 15, 2007 11:45

108 combinatorial algorithms for market equilibria

and corresponding to each nonzero xij , the equality given by the fourth KKT
condition.

5.3 Checking If Given Prices Are Equilibrium Prices

Let p = (p1, . . . , pn) denote a vector of prices. Let us first devise an algorithm for
answering the following question: Is p the equilibrium price vector, and if so, find
equilibrium allocations for the buyers.

At prices p, buyer i derives uij /pj amount of utility per unit money spent on good j .
Clearly, she will be happiest with goods that maximize this ratio. Define her bang per
buck to be αi = maxj {uij /pj }. For each i ∈ B, j ∈ A, αi ≥ uij /pj , with equality
holding only if j is i’s bang per buck good. If there are several goods maximizing
this ratio, she is equally happy with any combination of these goods. This motivates
defining the following bipartite graph, G. Its bipartition is (A, B) and for i ∈ B, j ∈ A,
(i, j) is an edge in G iff αi = uij /pj . We will call this graph the equality subgraph and
its edges the equality edges.

5.3.1 The Network N(p)

Any goods sold along the edges of the equality subgraph will make buyers happiest,
relative to prices p. Computing the largest amount of goods that can be sold in this
manner, without exceeding the budgets of buyers or the amount of goods available
(assumed unit for each good), can be accomplished by computing max-flow in the
following network (see Figure 5.1). Direct edges of G from A to B and assign a
capacity of infinity to all these edges. Introduce source vertex s and a directed edge
from s to each vertex j ∈ A with a capacity of pj . Introduce sink vertex t and a directed
edge from each vertex i ∈ B to t with a capacity of ei . The network is clearly a function
of the prices p and will be denoted by N(p).

p1 m1

m2

m3

p2

p3

p4

A: goods B: buyers

1 1

2

2

3

34

ts

infinite capacity edges

Figure 5.1. The network N(p).

P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 July 15, 2007 11:45

the primal-dual schema in the enhanced setting 109

Corresponding to a feasible flow f in network N(p), let us define the allocation of
goods to the buyers to be the following. If edge (j, i) from good j to buyer i carries
flow f (j, i), then buyer i receives f (j, i)/pj units of good j .

The question posed above can be answered via one max-flow computation, as
asserted in the following lemma. Its proof is straightforward and is omitted.

Lemma 5.2 Prices p are equilibrium prices iff in the network N(p) the two cuts
(s, A ∪ B ∪ t) and (s ∪ A ∪ B, t) are min-cuts. If so, allocations corresponding
to any max-flow in N are equilibrium allocations.

5.4 Two Crucial Ingredients of the Algorithm

The algorithm starts with very low prices that are guaranteed to be below the equilibrium
prices for each good. The algorithm always works on the network N(p) w.r.t. the current
prices p. W.r.t. the starting prices, buyers have surplus money left. The algorithm raises
prices iteratively and reduces the surplus. When the surplus vanishes, it terminates;
these prices are equilibrium prices.

This algorithmic outline immediately raises two questions:

� How do we ensure that the equilibrium price of no good is exceeded?
� How do we ensure that the surplus money of buyers reduces fast enough that the

algorithm terminates in polynomial time?

The answers to these two questions lead to two crucial ingredients of the algorithm:
tight sets and balanced flows.

5.5 The Primal-Dual Schema in the Enhanced Setting

We will use the notation setup in the previous sections to describe at a high level the
new difficulties presented by the enhanced setting of convex programs and the manner
in which the primal-dual schema is modified to obtain a combinatorial algorithm for
solving the Eisenberg–Gale convex program.

The fundamental difference between complementary slackness conditions for linear
programs and KKT conditions for nonlinear convex programs is that whereas the
former do not involve both primal and dual variables simultaneously in an equality
constraint (obtained by assuming that one of the variables takes a nonzero value), the
latter do.

As described in the previous section, the algorithm will start with very low prices and
keep increasing them greedily, i.e., the dual growth process is greedy. Indeed, all known
primal-dual algorithms use a greedy dual growth process – with one exception, namely
Edmonds’ algorithm for maximum weight matching in general graphs (Edmonds,
1965).

Now, the disadvantage of a greedy dual growth process is obvious – the fact that a
raised dual is “bad,” in the sense that it “obstructs” other duals that could have led to a
larger overall dual solution, may become clear only later in the run of the algorithm. In

P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 July 15, 2007 11:45

110 combinatorial algorithms for market equilibria

view of this, the issue of using more sophisticated dual growth processes has received
a lot of attention, especially in the context of approximation algorithms. The problem
with such a process is that it will make primal objects go tight and loose and the
number of such reversals will have to be upper bounded in the running time analysis.
The impeccable combinatorial structure of matching supports such an accounting and
in fact this leads to a strongly polynomial algorithm. However, thus far, all attempts at
making such a scheme work out for other problems have failed.

In our case, even though the dual growth process is greedy, because of the more
complex nature of KKT conditions, edges in the equality subgraph appear and disappear
as the algorithm proceeds. Hence, we are forced to carry out the difficult accounting
process alluded to above for bounding the running time.

We next point out which KKT conditions the algorithm enforces and which ones
it relaxes, as well as the exact mechanism by which it satisfies the latter. Throughout
the algorithm, we enforce the first two conditions listed in Section 5.2. As mentioned
in Section 5.4, at any point in the algorithm, via a max-flow in the network N(p), all
goods can be sold; however, buyers may have surplus money left over. W.r.t. a balanced
flow in network N(p) (see Section 5.7 for a definition of such a flow), let mi be the
money spent by buyer i. Thus, buyer i’s surplus money is γ i = ei − mi . We will relax
the third and fourth KKT conditions to the following:

� ∀i ∈ B,∀j ∈ A :
uij

pj

≤
∑

j∈A uij xij

mi

.

� ∀i ∈ B,∀j ∈ A : xij > 0 ⇒ uij

pj

=
∑

j∈A uij xij

mi

.

Consider the following potential function:

� = γ 2
1 + γ 2

2 + · · · + γ 2
n′ .

We will give a process by which this potential function decreases by an inverse poly-
nomial fraction in polynomial time (in each phase, as detailed in Lemma 5.21). When
� drops all the way to zero, all KKT conditions are exactly satisfied.

Finally, there is a marked difference between the way this algorithm will satisfy
KKT conditions and the way primal-dual algorithms for LP’s do. The latter satisfy
complementary conditions in discrete steps, i.e., in each iteration, the algorithm sat-
isfies at least one new condition. So, if each iteration can be implemented in strongly
polynomial time, the entire algorithm has a similar running time. On the other hand,
the algorithm for Fisher’s linear case satisfies KKT conditions continuously – as the
algorithm proceeds, the KKT conditions corresponding to each buyer get satisfied to a
greater extent.

Observe that at the start of the algorithm, the value of φ is a function not just of
the number of buyers and goods but of the length of the input (since it depends on
the money possessed by buyers). Therefore, even though a phase of the algorithm can
be implemented in strongly polynomial time, the running time of the entire algorithm
is polynomial and not strongly polynomial. Indeed, obtaining a strongly polynomial
algorithm for this problem remains a tantalizing open problem (see Section 5.15).

P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 July 15, 2007 11:45

balanced flows 111

5.6 Tight Sets and the Invariant

Let p denote the current prices within the run of the algorithm. For a set S ⊆ A of goods,
let p(S) denote the total value of goods in S; this is simply the sum of current prices of
goods in S. For a set T ⊆ B of buyers, let m(T) denote the total money possessed by
the buyers in T ; i.e., m(T) = ∑

i∈T ei . For S ⊆ A, define its neighborhood in N(p),

�(S) = {j ∈ B | ∃i ∈ S with (i, j) ∈ N(p)}.
Clearly, �(S) is the set of buyers who are interested in goods in S at current prices.

We will say that S is a tight set if the current value of S exactly equals the money
possessed by buyers who are interested in goods in S; i.e., p(S) = m(�(S)). Under this
circumstance, increasing prices of goods in S may lead to exceeding the equilibrium
price of some good. Therefore, when a set of goods goes tight, the algorithm freezes
the prices of all goods in S. As described in Section 5.7, when new edges enter the
equality subgraph, the algorithm may unfreeze certain frozen goods and again start
increasing their prices.

A systematic way of ensuring that the equilibrium price of no good is exceeded is
to ensure the following Invariant.

Invariant: The prices p are such that the cut (s, A ∪ B ∪ t) is a min-cut in N(p).

Lemma 5.3 For given prices p, network N(p) satisfies the Invariant iff

∀S ⊆ A : p(S) ≤ m(�(S)).

proof The forward direction is trivial, since under max-flow (of value p(A))
every set S ⊆ A must be sending p(S) amount of flow to its neighborhood.

Let us prove the reverse direction. Assume that (s ∪ A1 ∪ B1, A2 ∪ B2 ∪ t) is a
min-cut in N(p), with A1, A2 ⊆ A and B1, B2 ⊆ B (see Figure 5.2). The capacity
of this cut is p(A2) + m(B1). Now, �(A1) ⊆ B1, since otherwise the cut will have
infinite capacity. Moving A1 and �(A1) to the t side also results in a cut. By
the condition stated in the Lemma, p(A1) ≤ m(�(A1)). Therefore, the capacity
of this cut is no larger than the previous one and this is also a min-cut in N(p).
Hence the Invariant holds.

The Invariant ensures that, at current prices, all goods can be sold. The only even-
tuality is that buyers may be left with surplus money. The algorithm raises prices
systematically, thereby decreasing buyers’ surplus money. When (s ∪ A ∪ B, t) is also
a min-cut in N(p), by Lemma 5.2, equilibrium has been attained.

5.7 Balanced Flows

Denote the current network, N(p), by simply N . We will assume that network N

satisfies the Invariant; i.e., (s, A ∪ B ∪ t) is a min-cut in N . Given a feasible flow f in
N , let R(f) denote the residual graph w.r.t. f . Define the surplus of buyer i, γi(N, f),
to be the residual capacity of the edge (i, t) with respect to flow f in network N ,

P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 July 15, 2007 11:45

112 combinatorial algorithms for market equilibria

A1

A2 B2

B1

s t

Figure 5.2. Min-cut in N(p). There are no edges from A1 to B2.

i.e., ei minus the flow sent through the edge (i, t). The surplus vector is defined to be
γ (N, f) := (γ1(N, f), γ2(N, f), . . . , γn(N, f)). Let ‖v‖ denote the l2 norm of vector
v. A balanced flow in network N is a flow that minimizes ‖γ (N, f)‖. A balanced flow
must be a max-flow in N because augmenting a given flow can only lead to a decrease
in the l2 norm of the surplus vector.

Lemma 5.4 All balanced flows in N have the same surplus vector.

proof It is easy to see that if γ1 and γ2 are the surplus vectors w.r.t flows f1

and f2, then (γ1 + γ2)/2 is the surplus vector w.r.t the flow (f1 + f2)/2. Since the
set of feasible flows in N is a convex region, so is the set of all feasible surplus
vectors. Since a balanced flow minimizes a strictly concave function of the surplus
vector, the optimal surplus vector must be unique.

The following property of balanced flows will be used critically in the algorithm. 3

Property 1: If γ j (N, f) < γ i(N, f) then there is no path from node j to node i

in R(f) − {s, t}.

Theorem 5.5 A maximum-flow in N is balanced iff it satisfies Property 1.

proof Let f be a balanced flow and let γi(N, f) > γj (N, f) for some i, j ∈ B.
Suppose, for the sake of contradiction, there is a path from j to i in R(f) − {s, t}.

In N , the only edge out of j is the edge (j, t). Since the path in R(f) from j to i

must start with a positive capacity edge which is different from edge (j, t), by flow
conservation, the capacity of (t, j) must be positive in R(f). Since γi(N, f) > 0,
the edge (i, t) has a positive capacity in R(f). Now, the edges (t, j) and (i, t)

3 Unlike the previous sections, in Section 5.7, j will denote a buyer.

P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 July 15, 2007 11:45

balanced flows 113

Figure 5.3. The circulation in R(f) if Property 1 does not hold.

concatenated with the path from j to i gives us a cycle with positive residual
capacity in R(f) (see Figure 5.3). Sending a circulation of positive value along
this cycle will result in another max-flow in which the residual capacity of j is
slightly larger and that of i is slightly smaller; i.e., the flow is more balanced. This
contradicts the fact that f is a balanced flow.

To prove the other direction, first observe that the l2 norm of the surplus vector
of a max-flow f satisfying Property 1 is locally optimum w.r.t. changes in pairs
of components of the surplus vector. This is so because any circulation in R(f)
can only send flow from a high surplus buyer to a low surplus buyer resulting
in a less balanced flow. Now, since l2 norm is a strictly concave function, any
locally optimal solution is also globally optimal. Hence, a max-flow f satisfying
Property 1 must be a balanced flow.

5.7.1 Finding a Balanced Flow

We will show that the following algorithm, which uses a divide and conquer strategy,
finds a balanced flow in the given network N in polynomial time. As stated above, we
will assume that this network satisfies the Invariant, i.e., (s, A ∪ B ∪ t) is a min-cut
in N .

Continuously reduce the capacities of all edges that go from B to t , other than those
edges whose capacity becomes zero, until the capacity of the cut ({s} ∪ A ∪ B, {t})
becomes the same as the capacity of the cut ({s}, A ∪ B ∪ {t}). Let the resulting network
be N ′ and let f ′ be a max-flow in N ′. Find a maximal s − t min-cut in N ′, say (S, T),
with s ∈ S and t ∈ T .

Case 1: If T = {t} then find a max-flow in N ′ and output it – this will be a balanced
flow in N .

Case 2: Otherwise, let N1 and N2 be the subnetworks of N induced by S ∪ {t}
and T ∪ {s}, respectively. (Observe that N1 and N2 inherit original capacities from
N and not the reduced capacities from N ′.) Let A1 and B1 be the subsets of A and
B, respectively, induced by N1. Similarly, let A2 and B2 be the subsets of A and B,
respectively, induced by N2. Recursively find balanced flows, f1 and f2, in N1 and N2,
respectively. Output the flow f = f1 ∪ f2 – this will be a balanced flow in N .

P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 July 15, 2007 11:45

114 combinatorial algorithms for market equilibria

Lemma 5.6 f is a max-flow in N .

proof In the first case, i.e., T = {t}, the algorithm outputs a max-flow in N ′.
This flow must saturate the cut ({s} ∪ A ∪ B, {t}). However, since the capacity
of this cut in N ′ is the same as the capacity of the cut ({s}, A ∪ B ∪ {t}), by the
Invariant, this is also a max-flow in N .

Next let us consider the second case. Since N1 and N2 are edge-disjoint net-
works, f = f1 ∪ f2 will be a feasible flow in N . We will show that f must saturate
all edges from s to A and therefore by the Invariant, it is a max-flow.

Let g be a max-flow in N . Observe that N ′, and hence N , cannot have any edges
from A1 to B2. Therefore, all flow of g going to A1 must flow via B1. Therefore,
the restriction of g to N1 saturates all edges from s to A1 in N1. Therefore, so
must f1 since it is a max-flow in N1.

Let f ′ be a max-flow in N ′. Since (S, T) is a min-cut in N ′, f ′ must saturate
all edges from s to A2. Furthermore, all flow of f ′ going to A2 must flow via B2,
i.e., the restriction of f ′ to flow going through A2 is a feasible flow in N2. Since
f2 is a max-flow in N2, it must also saturate all edges from s to A2. Hence f

saturates all edges from s to A in N , and is therefore a max-flow.

Lemma 5.7 f is a balanced flow in network N .

proof We will show, by induction on the depth of recursion, that the max-flow
output by the algorithm is a balanced flow in N . In the base case, the algorithm
terminates in the first case; i.e., T = {t}, the surplus vector is precisely the amounts
subtracted from capacities of edges from B to t in going from N to N ′. Clearly,
this surplus vector makes components as equal as possible, thus minimizing its l2
norm.

Next assume that the algorithm terminates in the second case. By Lemma 5.6, f
is a max-flow; we will show that it satisfies Property 1 and is therefore a balanced
flow. By the induction hypothesis, f1 and f2 are balanced flows in N1 and N2,
respectively, and therefore Property 1 cannot be violated in these two networks.

Let R be the residual graph of N w.r.t. flow f ; we only need to show that
paths in R that go from one part to the other do not violate Property 1. As already
observed in the proof of Lemma 5.6, there are no edges from A1 to B2 in N , and
therefore there are no residual paths from j ∈ B1 to i ∈ B2. There may however
be paths going from j ∈ B2 to i ∈ B1 in R. We will show that for any two nodes
i ∈ B1 and j ∈ B2, γi(N, f) < γj (N, f), thereby establishing Property 1.

First observe that by the maximality of the min-cut found in N ′, all nodes in B2

have surplus capacity > 0 w.r.t. flow f ′ in N ′ (all nodes having surplus zero must
be in B1). Therefore, the same amount, say X, was subtracted from the capac ity
of each edge (i, t), i ∈ B2, in going from network N to N ′. We will show that
γi(N, f) > X for each i ∈ B2. A similar proof shows that γi(N, f) < X for each
i ∈ B1, thereby establishing Property 1.

Let L be the set of vertices in B2 having minimum surplus w.r.t. f . Let K be
the set of vertices in A2 that are reachable via an edge from L in R. We claim

P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 July 15, 2007 11:45

the main algorithm 115

that �(K) = L, because otherwise, there will be a residual path from i ∈ L to
j ∈ B2 − L, thereby violating Property 1.

Let c(K) denote the sum of capacities of all edges from s to vertices of K .
Observe that all these edges are saturated in f ′ and this flow must leave via
vertices of L. Let EL denote the set of edges going from L to t . Let c(L) and
c′(L) denote the sum of capacities of all edges in EL in networks N and N ′,
respectively. By the argument given above, c′(L) > c(K).

Since X is subtracted from all edges in EL in going from network N to N ′,
c(L) = c′(L) + |L|X. The total surplus of the edges in EL w.r.t. flow f is

c(L) − c(K) = c′(L) + |L|X − c(K) > |L|X.

Finally, since all edges in EL have the same surplus, each has surplus > X. The
lemma follows.

Theorem 5.8 The above-stated algorithm computes a balanced flow in network
N using at most n max-flow computations.

proof Clearly, the number of goods in the biggest piece drops by at least 1 in
each iteration. Therefore, the depth of recursion is at most n. Next, observe that
N1 and N2 are vertex disjoint, other than s and t , and therefore, the time needed
to compute max-flows in them is bounded by the time needed to compute a max-
flow in N . Hence, the total computational overhead is n max-flow computations.
Finally, as shown in Lemma 5.7, the flow output by the algorithm is a balanced
flow in N .

5.8 The Main Algorithm

First we show how to initialize prices so the Invariant holds. The following two
conditions guarantee this.

� The initial prices are low enough prices that each buyer can afford all the goods. Fixing
prices at 1/n suffices, since the goods together cost one unit and all ei’s are integral.

� Each good j has an interested buyer, i.e., has an edge incident at it in the equality
subgraph. Compute αi for each buyer i at the prices fixed in the previous step and
compute the equality subgraph. If good j has no edge incident, reduce its price to

pj = max
i

{
uij

αi

}
.

If the Invariant holds, it is easy to see that there is a unique maximal tight set S ⊆ A.
Clearly, the prices of goods in the tight set cannot be increased without violating the
Invariant. On the other hand, the algorithm can raise prices of all goods in A − S.
However, we do not know any way of bounding the running time of any algorithm
based on such an approach. In fact, it seems that any such algorithm can be forced
to take a large number of steps in which it makes only very small progress toward
decreasing the surplus of the buyers, thereby taking super polynomial time.

P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 July 15, 2007 11:45

116 combinatorial algorithms for market equilibria

Instead, we will show how to use the notion of balanced flow to give a polynomial
time algorithm. The idea is to always raise prices of those goods which are desired by
buyers having a lot of surplus money. Eventually, when a subset of these goods goes
tight, the surplus of some of these buyers vanishes, thus leading to substantial progress.
Property 1 of balanced flows provides us with a powerful condition to ensure that even
as the network N(p) changes because of changes in p, the algorithm can still keep
working with a set of buyers having a large surplus.

The iterative improvement steps follow the spirit of the primal-dual schema: The
“primal” variables are the flows in the edges of N(p) and the “dual” variables are
the current prices. The current flow suggests how to improve the prices and vice
versa.

A run of the algorithm is partitioned into phases, each phase ends with a new set
going tight. Each phase is partitioned into iterations that are defined below.

A phase starts with computation of a balanced flow, say f , in the current network,
N(p). If the algorithm of Section 5.7 for finding a balanced flow terminates in
Case 1, then by Lemma 5.2 the current prices and allocations are equilibrium prices
and allocations and the algorithm halts. Otherwise, let δ be the maximum surplus of
buyers w.r.t. f . Initialize I to be the set of buyers having surplus δ. Let J be the set of
goods that have edges to I in N(p). The network induced by I ∪ J is called the active
subgraph.

At this point, we are ready to raise prices of goods in J . However, we would like to
do this in such a way that for each buyer i ∈ I , the set of goods she likes best, which
are all in J , remains unchanged as prices increase. This can be accomplished by raising
prices of goods in J in such a way that the ratio of any two prices remains unchanged.
The rest of the algorithm for a phase is as follows.

Step �: Multiply the current prices of all goods in J by variable x, initialize x to 1
and raise x continuously until one of the following two events happens. Observe that
as soon as x > 1, buyers in B − I are no longer interested in goods in J and all such
edges can be dropped from the equality subgraph and N .

� Event 1: If a subset S ⊆ J goes tight, the current phase terminates and the algorithm
starts with the next phase.

� Event 2: As prices of goods in J keep increasing, goods in A − J become more and
more desirable for buyers in I . If as a result an edge (i, j), with i ∈ I and j ∈ A − J ,
enters the equality subgraph (see Figure 5.4). add directed edge (j, i) to network N (p)
and compute a balanced flow, say f , in the current network, N (p). If the balanced
flow algorithm terminates in Case 1, halt and output the current prices and allocations.
Otherwise, let R be the residual graph corresponding to f . Determine the set of all
buyers that have residual paths to buyers in the current set I (clearly, this set will contain
all buyers in I). Update the new set I to be this set. Update J to be the set of goods that
have edges to I in N (p). Go to Step �.

To complete the algorithm, we simply need to compute the smallest values of x at
which Event 1 and Event 2 happen, and consider only the smaller of these. For Event
2, this is straightforward. We give an algorithm for Event 1 in the next section.

P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 July 15, 2007 11:45

finding tight sets 117

j active
subgraph

i

A − J

J I

B − I

s t

Figure 5.4. If Event 2 happens, edge (j , i) is added to N(p).

5.9 Finding Tight Sets

Let p denote the current price vector (i.e., at x = 1). We first present a lemma that
describes how the min-cut changes in N(x · p) as x increases. Throughout this section,
we will use the function m to denote money w.r.t. prices p. W.l.o.g. assume that w.r.t.
prices p the tight set in G is empty (since we can always restrict attention to the active
subgraph, for the purposes of finding the next tight set). Define

x∗ = min
∅�=S⊆A

m(�(S))

m(S)
,

the value of x at which a nonempty set goes tight. Let S∗ denote the tight set at
prices x∗ · p. If (s ∪ A1 ∪ B1, A2 ∪ B2 ∪ t) is a cut in the network, we will assume that
A1, A2 ⊆ A and B1, B2 ⊆ B.

Lemma 5.9 W.r.t. prices x · p:
� if x ≤ x∗ then (s, A ∪ B ∪ t) is a min-cut.
� if x > x∗ then (s, A ∪ B ∪ t) is not a min-cut. Moreover, if (s ∪ A1 ∪ B1, A2 ∪

B2 ∪ t) is a min-cut in N (x · p) then S∗ ⊆ A1.

proof Suppose x ≤ x∗. By definition of x∗,

∀S ⊆ A : x · m(S) ≤ m(�(S)).

Therefore by Lemma 5.3, w.r.t. prices x · p, the Invariant holds. Hence (s, A ∪
B ∪ t) is a min-cut.

Next suppose that x > x∗. Since x · m(S∗) > x∗ · m(S∗) = m(�(S∗)), w.r.t.
prices x · p, the cut (s ∪ S∗ ∪ �(S∗), t) has strictly smaller capacity than the cut
(s ∪ A ∪ B, t). Therefore the latter cannot be a min-cut.

Now consider the min-cut (s ∪ A1 ∪ B1, A2 ∪ B2 ∪ t). Let S∗ ∩ A2 = S2 and
S∗ − S2 = S1. Suppose S2 �= ∅. Clearly �(S1) ⊆ B1 (otherwise the cut will have
infinite capacity). If m(�(S2) ∩ B2) < x · m(S2), then by moving S2 and �(S2) to

P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 July 15, 2007 11:45

118 combinatorial algorithms for market equilibria

the s side of this cut, we can get a smaller cut, contradicting the minimality of the
cut picked. In particular, m(�(S∗) ∩ B2) ≤ m(�(S∗)) = x∗ · m(S∗) < x · m(S∗).
Therefore S2 �= S∗, and hence, S1 �= ∅. Furthermore,

m(�(S2) ∩ B2) ≥ x · m(S2) > x∗m(S2).

On the other hand,

m(�(S2) ∩ B2) + m(�(S1)) ≤ x∗(m(S2) + m(S1)).

The two imply that

m(�(S1))

m(S1)
< x∗,

contradicting the definition of x∗. Hence S2 = ∅ and S∗ ⊆ A1.

Lemma 5.10 Let x = m(B)/m(A) and suppose that x > x∗. If (s ∪ A1 ∪
B1, A2 ∪ B2 ∪ t) be a min-cut in N(x · p) then A1 must be a proper subset of
A.

proof If A1 = A, then B1 = B (otherwise this cut has ∞ capacity), and (s ∪
A ∪ B, t) is a min-cut. But for the chosen value of x, this cut has the same capacity
as (s, A ∪ B ∪ t). Since x > x∗, the latter is not a min-cut by Lemma 5.9. Hence,
A1 is a proper subset of A.

Lemma 5.11 x∗ and S∗ can be found using n max-flow computations.

proof Let x = m(B)/m(A). Clearly, x ≥ x∗. If (s, A ∪ B ∪ t) is a min-cut in
N(x · p), then by Lemma 5.9, x∗ = x. If so, S∗ = A.

Otherwise, let (s ∪ A1 ∪ B1, A2 ∪ B2 ∪ t) be a min-cut in N(x · p). By Lem-
mas 5.9 and 5.10, S∗ ⊆ A1 ⊂ A. Therefore, it is sufficient to recurse on the smaller
graph (A1, �(A1)).

5.10 Running Time of the Algorithm

Let U = maxi∈B,j∈A{uij } and let � = nUn.

Lemma 5.12 At the termination of a phase, the prices of goods in the newly
tight set must be rational numbers with denominator ≤ �.

proof Let S be the newly tight set and consider the equality subgraph induced
on the bipartition (S, �(S)). Assume w.l.o.g. that this graph is connected (other-
wise we prove the lemma for each connected component of this graph). Let j ∈ S.
Pick a subgraph in which j can reach all other vertices j ′ ∈ S. Clearly, at most
2|S| ≤ 2n edges suffice. If j reaches j ′ with a path of length 2l, then pj ′ = apj/b

where a and b are products of l utility parameters (uik’s) each. Since alternate
edges of this path contribute to a and b, we can partition the uik’s in this subgraph

P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 July 15, 2007 11:45

running time of the algorithm 119

into two sets such that a and b use uik’s from distinct sets. These considerations
lead easily to showing that m(S) = pjc/d where c ≤ �. Now,

pj = m(�(S))d/c,

hence proving the lemma.

Lemma 5.13 Consider two phases P and P ′, not necessarily consecutive, such
that good j lies in the newly tight sets at the end of P as well as P ′. Then the
increase in the price of j , going from P to P ′, is ≥ 1/�2.

proof Let the prices of j at the end of P and P ′ be p/q and r/s, respectively.
Clearly, r/s > p/q. By Lemma 5.12, q ≤ � and r ≤ �. Therefore the increase
in price of j ,

r

s
− p

q
≥ 1

�2
.

Within a phase, we will call each occurrence of Events 1 and 2 an iteration.

Lemma 5.14 The total number of iterations in a phase is bounded by n.

proof After an iteration due to Event 2, at least one new good must move into
the active subgraph. Since there is at least one good in the active subgraph at the
start of a phase, the total number of iterations in a phase due to Event 2 is at
most n − 1. Finally, the last iteration in each phase is due to Event 1. The lemma
follows.

Lemma 5.15 If f and f ∗ are respectively a feasible and a balanced flow
in N(p) such that γi(p, f ∗) = γi(p, f) − δ, for some i ∈ B and δ > 0, then
‖γ (p, f)∗‖2 ≤ ‖γ (p, f)‖2 − δ2.

proof Suppose we start with f and get a new flow f ′ by decreasing the surplus
of i by δ, and increasing the surpluses of some other buyers in the process. We
show that this already decreases the l2 norm of the surplus vector by δ2 and so the
lemma follows.

Consider the flow f ∗ − f . Decompose this flow into flow paths and circula-
tions. Among these, augment f with only those that go through the edge (i, t), to
get f ′. These are either paths that go from s to i to t , or circulations that go from
i to t to some il and back to i. Then γi(f ′) = γi(f ∗) = γi(f) − δ and for a set
of vertices i1, i2, . . . , ik , we have γil (f

′) = γil (f) + δl , s.t. δ1, δ2, . . . , δk > 0 and∑k
l=1 δl ≤ δ. Moreover, for all l, there is a path from i to il in R(p, f ∗). Since f ∗

is balanced, and satisfies Property 1, γi(f ′) = γi(f ∗) ≥ γil (f
∗) ≥ γil (f

′).
By Lemma 5.16, ‖γ (p, f ′)‖2 ≤ ‖γ (p, f)‖2 − δ2 and since f ∗ is a balanced

flow in N(p), ‖γ (p, f ∗)‖2 ≤ ‖γ (p, f ′)‖2.

P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 July 15, 2007 11:45

120 combinatorial algorithms for market equilibria

Lemma 5.16 If a ≥ bi ≥ 0, i = 1, 2, . . . , n and δ ≥ ∑n
j=1 δj where δ, δj ≥

0, j = 1, 2, . . . , n, then

‖(a, b1, b2, . . . , bn)‖2 ≤ ‖(a + δ, b1 − δ1, b2 − δ2, . . . , bn − δn)‖2 − δ2.

proof

(a + δ)2 +
n∑

i=1

(bi − δi)
2 − a2 −

n∑

i=1

b2
i ≥ δ2 + 2a

(
δ −

n∑

i=1

δi

)
≥ δ2.

Let N0 denote the network at the beginning of a phase. Assume that the phase
consists of k iterations, and that Nt denotes the network at the end of iteration t . Let ft

be a balanced flow in Nt , 0 ≤ t ≤ k.

Lemma 5.17 ft is a feasible flow in Nt+1, for 0 ≤ t < k.

proof The lemma follows from the fact that each of the two actions, raising
the prices of goods in J or adding an edge as required in Event 2, can only lead
to a network that supports an augmented max-flow.

Corollary 5.18 ‖γ (Nt)‖ is monotonically decreasing with t .

Let δt denote the minimum surplus of a buyer in the active subgraph in network Nt ,
for 0 ≤ t < k; clearly, δ0 = δ.

Lemma 5.19 If δt−1 − δt > 0 then there exists an i ∈ H such that γi(pt−1) −
γi(pt) ≥ δt−1 − δt .

proof Consider the residual network R(pt , f) corresponding to the balanced
flow computed at the end of iteration t . By definition of Ht , every vertex v ∈
Ht \ Ht−1 can reach a vertex i ∈ Ht−1 in R(pt , f) and therefore, by Theorem 5.5,
γv(pt) ≥ γi(pt). This means that minimum surplus δt is achieved by a vertex i

in Ht−1. Hence, the surplus of vertex i is decreased by at least δt−1 − δt during
iteration t .

Lemma 5.20 If δt+1 < δt then ‖γ (Nt)‖2 − ‖γ (Nt+1)‖2 ≥ (δt − δt+1)2, for 0 ≤
t < k.

proof By Lemma 5.19, if δt+1 < δt then there is a buyer i whose surplus drops
by δt − δt+1 in going from ft to ft+1. By Lemmas 5.15 and 5.17, we get the
desired conclusion.

P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 July 15, 2007 11:45

the linear case of the arrow–debreu model 121

Lemma 5.21 In a phase, the square of the l2 norm of the surplus vector drops
by a factor of

(
1 − 1

n2

)
.

proof We will first prove that

‖γ (N0)‖2 − ‖γ (Nk)‖2 ≥ δ2

n
.

Observe that the left-hand side can be written as a telescoping sum in which
each term is of the form ‖γ (Nt)‖2 − ‖γ (Nt+1)‖2. By Corollary 5.18, each of these
terms is positive. Consider only those terms in which the difference δt − δt+1 >

0. Their sum is minimized when all these differences are equal. Now using
Lemma 5.20 and the fact that δ0 = δ and δk = 0, we get that

‖γ (N0)‖2 − ‖γ (Nk)‖2 ≥ δ2

k
.

By Lemma 5.14, k ≤ n, giving the desired inequality.
The above-stated inequality and the fact that ‖γ (N0)‖2 ≤ nδ2 gives us

‖γ (Nk)‖2 ≤ ‖γ (N0)‖2

(
1 − 1

n2

)
.

The lemma follows.

Theorem 5.22 The algorithm finds equilibrium prices and allocations for linear
utility functions in Fisher’s model using

O(n4(log n + n log U + log M))

max-flow computations.

proof By Lemma 5.21, the square of the surplus vector drops by a factor of half
after O(n2) phases. At the start of the algorithm, the square of the surplus vector is
at most M2. Once its value drops below 1/�4, the algorithm achieves equilibrium
prices. This follows from Lemmas 5.12 and 5.13 Therefore the number of phases
is

O(n2 log(�4M2) = O(n2(log n + n log U + log M)).

By Lemma 5.14 each phase consists of n iterations and by Lemma 5.11 each
iteration requires n max-flow computations. The theorem follows.

5.11 The Linear Case of the Arrow–Debreu Model

The Arrow–Debreu model is also known as the Walrasian model or the exchange
model, and it generalizes Fisher’s model. Consider a market consisting of a set A of
agents and a set G of goods; assume |G| = n and |A| = m. Each agent i comes to the

P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 July 15, 2007 11:45

122 combinatorial algorithms for market equilibria

market with an initial endowment of goods, ei = (ei1, ei2, . . . , ein). We may assume
w.l.o.g. that the total amount of each good is unit, i.e., for 1 ≤ j ≤ n,

∑m
i=1 eij = 1.

Each agent has linear utilities for these goods. The utility of agent i on deriving xij

amount of good j , for 1 ≤ j ≤ n, is
∑n

j=1 uijxij .
The problem is to find prices p = (p1, . . . , pm) for the goods so that if each agent

sells her initial endowment at these prices and buys her optimal bundle, the market
clears; i.e., there is no deficiency or surplus of any good. An agent may have more than
one optimal bundle; we will assume that we are free to give each agent any optiaml
bundle to meet the market clearing condition.

Observe that a Fisher market with linear utilities, n goods, and m buyers reduces
to an Arrow–Debreu market with linear utilities, n + 1 goods and m + 1 agents as
follows. In the Arrow–Debreu market, we will assume that money is the n + 1’st good,
the first m agents correspond to the m buyers whose initial endowment is the money
they come to the market with and the m + 1’st agent’s initial endowment is all n goods.
The first m agents have utilities for goods, as given by the Fisher market and no utility
for money, whereas the m + 1’st agent has utility for money only.

We define the following terms for the algorithm below. For agent i, let ai = ∑m
j=1 eij .

Let amin be the minimum among ai, 1 ≤ i ≤ m. Denote by pmax the maximum price
assigned to a good by the algorithm. Denote by umin and umax the minimum and
maximum values of uij over all agents i and goods j .

5.12 An Auction-Based Algorithm

We will present an auction-based algorithm for the linear case of the Arrow–Debreu
model. It will find an approximate equilibrium in the following sense. For any fixed
ε > 0, it will find prices p for the goods such that the market clears and each agent
gets a bundle of goods that provides her utility at least (1 − ε)2 times the utility of her
optimal bundle.

The algorithm initializes the price of each good to be unit, computes the worth of
the initial endowment of each agent, and gives this money to each agent. All goods are
initially fully unsold.

We will denote by p = (p1, p2, . . . , pn) the vector of prices of goods at any point in
the algorithm. As p changes, the algorithm recomputes the value of each agent’s initial
endowment and updates her money accordingly. Clearly, at the start of the algorithm,
the total surplus (unspent) money of all agents is n.

At any point in the algorithm, a part of good j is sold at price pj and part of it is
sold at (1 + ε)pj . The run of the algorithm is partitioned into iterations. Each iteration
terminates when the price of some good is raised by a factor of (1 + ε). Each iteration
is further partitioned into rounds. In a round, the algorithm considers agents one by one
in some arbitrary but fixed order, say 1, 2, . . . , m. If the agent being considered, i, has
no surplus money, the algorithm moves to the next agent. Otherwise, it finds i’s optimal
good, in terms of bang per buck, at current prices; say, it is good j . It then proceeds
to execute the operation of outbid. This entails buying back good j from agents who
have it at price pj and selling it to i at price pj (1 + ε). This process can end in one of
two ways:

P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 July 15, 2007 11:45

an auction-based algorithm 123

� Agent i’s surplus money is exhausted. If so, the algorithm moves on to the next agent.
� No agent has good j at price pj anymore. If so, it raises the price of good j to pj (1 + ε)

by setting pj to pj (1 + ε). The current iteration terminates and agents’ moneys are
updated because of this price rise.

When the current round comes to an end, the algorithm checks if the total surplus
money with the buyers is at most εamin. If so, the algorithm terminates. Otherwise, it
goes to the next round.

At termination, the algorithm gives the unsold goods to an arbitrary agent to en-
sure that the market clears. It outputs the allocations received by all agents and the
terminating prices p. Observe, however, that some of good j may have been sold at
price (1 + ε)pj even though the equilibrium price of good j is pj . Because of this
descrepancy, agents will only get approximately optimal bundles. Lemma 5.25 will
establish a bound on the approximation factor.

Lemma 5.23 The number of rounds executed in an iteration is bounded by

O

(
1

ε
log

npmax

εamin

)
.

proof Observe that if outbid buys a good at price pj , it sells it at price (1 +
ε)pj , thereby decreasing the overall surplus. Therefore, in each round that is fully
completed (i.e., does not terminate mid-way because of a price increase), the
total surplus of agents is reduced by a factor of (1 + ε). The total surplus at the
beginning of the iteration is at most the total money possessed by all agents, i.e.,
npmax. The iteration terminates (and in fact the algorithm terminates) as soon as
the total surplus is at most εamin. Therefore, a bound on the number of rounds in
an iteration is

log1+ε

npmax

εamin
.

Lemma 5.24 The total number of iterations is bounded by

O

(
n

ε
log pmax

)
.

proof Each iteration raises the price of a good by a factor of (1 + ε). Therefore
the number of iterations is bounded by

n log1+ε pmax.

P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 July 15, 2007 11:45

124 combinatorial algorithms for market equilibria

Lemma 5.25 Relative to terminating prices, each agent gets a bundle of goods
that provides her utility at least (1 − ε)2 times the utility of her optimal bundle.

proof The algorithm always sells an agent her optimal goods relative to current
prices p (recall, however, that at the time of the sale, an agent is charged a price
of (1 + ε)pj for good j). There are two reasons why an agent i may end up with a
suboptimal bundle in the end. First, at termination, part of her money may remain
unspent. Let M denote the total worth of i’s initial endowment at terminating
prices. Assume that she spent M1 of this. Since the total surplus money left at
termination is at most εamin, M1 ≥ (1 − ε)M .

The second reason is that some part of good j may have been sold at price (1 +
ε)pj to agent i, even though the equilibrium price announced is pj . Equivalently,
we may assume that i gets her optimal goods at prices p for a fraction of her
money. The latter is at least

M1

1 + ε
≥ (1 − ε)M

1 + ε
≥ (1 − ε)2M

money. The lemma follows.

Theorem 5.26 The algorithm given above finds an approximate equilibrium for
the linear case of the Arrow–Debreu model in time

O

(
mn

ε2
log

nvmax

εaminvmin
log

vmax

vmin

)
.

proof Observe that each good whose price is raised beyond 1 is fully sold.
Since the total money of agents is the total worth of all goods at prices p, the
condition that the total surplus money of agents is at most εamin must be reached
before the price of all goods increases beyond 1. Hence at termination, the price
of at least one good is 1.

Clearly, at termination, the ratio of maximum to minimum price of a good is
bounded by vmax/vmin. Therefore, pmax is bounded by vmax/vmin. Each round is
executed in O(m) time. Now the bound on the total running time follows from
Lemmas 5.23 and 5.24.

5.13 Resource Allocation Markets

Kelly considered the following general setup for modeling resource allocation. Let R

be a set of resources and c: R → Z+ be the function specifying the available capacity
of each resource r ∈ R. Let A = {a1, . . . , an} be a set of agents and mi ∈ Z+ be the
money available with agent ai .

Each agent wants to build as many objects as possible using resources in R. An
agent may be able to use several different subsets of R to make one object. Let
Si1, Si2, . . . , Siki

be subsets of R usable by agent ai , ki ∈ Z+. Denote by xij the number
of objects ai makes using the subset Sij , 1 ≤ j ≤ ki ; xij is not rquired to be integral.
Let fi = ∑ki

j=1 xij be the total number of objects made by agent ai . We will say that

P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 July 15, 2007 11:45

resource allocation markets 125

fi, 1 ≤ i ≤ n is feasible if simultaneously each agent ai can make fi objects without
violating capacity constraints on R.

Kelly gave the following convex program and showed that an optimal solution to it
satisfies proportional fairness; i.e., if f ∗

i is an optimal solution and fi is any feasible
solution, then

n∑

i=1

fi − f ∗
i

f ∗
i

≤ 0.

Intuitively, the only way of making an agent happier by 5% is to make other agents
unhappy by at least a total of 5%.

Maximize
∑

ai∈A

mi log fi

Subject to fi =
ki∑

j=1

xij ∀ai ∈ A

∑

(ij):r∈Sij

xij ≤ c(r) ∀r ∈ R

xij ≥ 0 ∀ai ∈ A, 1 ≤ j ≤ ki

(5.2)

This general setup can be used to model many situations. The following are examples
of situations of a combinatorial nature.

(i) Market 1 (flow market): Given a directed or undirected graph G = (V,E), E is
the set of resources, with capacities specified. Agents are source-sink pairs of nodes,
(s1, t1), . . . , (sk, tk), with money m1, . . . , mk , respectively. Each si − ti path is an
object for agent (si, ti).

(ii) Market 2: Given a directed graph G = (V,E), E is the set of resources, with
capacities specified. Agents are A ⊂ V , each with specified money. For s ∈ A objects
are branchings rooted at s and spanning all V .

(iii) Market 3: Same as above, except the graph is undirected and the objects are spanning
trees.

Using KKT conditions, one can show that an optimal solution to this convex program
is an equilibrium solution. Let pr, r ∈ R be Lagrangian variables corresponding to the
second set of conditions; we will interpret these as prices of resources. By the KKT
conditions optimal solutions to xij ’s and pr ’s must satisfy the following equilibrium
conditions:

(i) Resource r ∈ R has positive price only if it is used to capacity.
(ii) Each agent uses only the cheapest sets to make objects.

(iii) The money of each agent is fully used up.

Since the objective function of convex program (5.2) is strictly concave, one can
see that at optimality, the vector f1, . . . , fn is unique. Clearly, this also holds for every
equilibrium allocation.

P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 July 15, 2007 11:45

126 combinatorial algorithms for market equilibria

5.14 Algorithm for Single-Source Multiple-Sink Markets

In this section, we consider the special case of a flow market, Market 1, with a single
source and multiple sinks. We will assume that the underlying graph is directed. In case
it is undirected, one can use the standard reduction from undirected graphs to directed
graphs – replace each undirected edge (u, v) with the two edges (u, v) and (v, u) of the
same capacity.

Formally, let G = (V, E) be a directed graph with capacities on edges. Let s ∈ V

be the source node and T = {t1, . . . , tr} be the set of sink nodes, also called terminals.
Let mi be the money possessed by sink ti . The problem is to determine equilibrium
flow and edge prices. The following example may help appreciate better some of the
intricacies of this problem.

Example 5.27 Consider graph G = (V, E) with V = {s, a, b, c, d} and sinks
b and d with $120 and $10, respectively. The edges are (s, a), (s, c) having
capacity 2, (a, b) having capacity 1, and (a, d), (c, d), (c, b) having capacity
10 (see Figure 5.5). The unique equilibrium prices are p(s,a) = $10, p(a,b) =
$30, p(s,c) = $40, and the rest of the edges have zero price. At equilibrium, flow
on path s, a, d is 1, on s, a, b is 1, and on s, c, b is 2. Simulating the algorithm
below on this example will reveal the complex sequence of cuts it needs to find
in order to compute the equilibrium. Computing equilibrium for other values of
money is left as an intersting exercise.

We will present a strongly polynomial algorithm for this problem which is based
on the primal-dual schema; i.e., it alternately adjusts flows and prices, attempting to
satisfy all KKT conditions. Often, primal-dual algorithms can naturally be viewed as
executing an auction. This viewpoint is leads to a particularly simple way of presenting
the current algorithm. We will describe it as an ascending price auction in which the
buyers are sinks and sellers are edges. The buyers have fixed budgets and are trying to
maximize the flow they receive and the sellers are trying to extract as high a price as
possible from the buyers. One important deviation from the usual auction situation is

2

2

1

10
$10

$120

10

10

a b

dc

s

Figure 5.5. The network for Example 5.27.

P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 July 15, 2007 11:45

algorithm for single-source multiple-sink markets 127

that the sellers act in a highly coordinated manner – at any point in the algorithm, all
edges in a particular cut, say (S, S), raise their prices simultaneously while prices of
the remaining edges remain unchanged. The prices of all edges are initialized to zero.
The first cut considered by the algorithm is the (unique) maximal min-cut separating
all sinks from s, say (S0, S0).

Denote by rate(ti) the cost of the cheapest s − ti path w.r.t. current prices. The flow
demanded by sink ti at this point is mi/rate(ti). At the start of the algorithm, when all
edge prices are zero, each sink is demanding infinite flow. Therefore, the algorithm
will not be able to find a feasible flow that satisfies all demands. Indeed, this will be
the case all the way until termination; at any intermediate point, some cuts will need
to be oversaturated in order to meet all the demand.

The price of edges in cut (S, S) is raised as long as the demand across it exceeds
supply; i.e., the cut is oversaturated because of flow demanded by sinks in S. At the
moment that demand exactly equals supply, the edges in this cut stop raising prices and
declare themselves sold at current prices. This makes sense from the viewpoint of the
edges in the cut – if they raise prices any more, demand will be less than supply; i.e.,
the cut will be under-saturated, and then these edges will have to be priced at zero!

The crucial question is: when does the cut (S, S) realize that it needs to sell itself?
This point is reached as soon as there is a cut, say (U, U), with S ⊂ U , such that the
difference in the capacities of the two cuts is precisely equal to the flow demanded by
sinks in S − U (see Figure 5.6). Let (U, U) be the maximal such cut (it is easy to see
that it will be unique). If U = V , the algorithm halts. Otherwise, cut (U, U) must be
oversaturated – it assumes the role of (S, S) and the algorithm goes to the next iteration.

Note that an edge may be present in more than one cut whose price is raised by the
algorithm. If so, its price will be simply the sum of the prices assigned to these cuts.

Suppose that the algorithm executes k iterations. Let (Si, Si) be the cut it finds in
iteration i, 1 ≤ i ≤ k, with Sk = V . Clearly, we have S0 ⊂ S1 ⊂ · · · ⊂ Sk = V . Let Ti

be the set of terminals in Si − Si−1, for 1 ≤ i ≤ k. Let ci be the set of edges of G in
the cut (Si, Si), for 0 ≤ i < k and pi be the price assigned to edges in ci . Clearly, for
each terminal t ∈ Ti , rate(t) = p0 + · · · + pi−1, for 1 ≤ i ≤ k.

t2

t3

s

Cut(S, S) Cut(U, U)

Figure 5.6. The total flow demanded by t2 and t3 equals the difference in capacities of cut
(S, S) and cut (U, U).

P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 July 15, 2007 11:45

128 combinatorial algorithms for market equilibria

Let G′ denote the graph obtained by adding a new sink node t to G and edges (ti , t)
from each of the original sinks to t . Let the capacity of edge (ti , t) be mi/rate(ti). For
convenience, even in G′, we will denote V − S by S. It is easy to see that each of the
cuts (Si, Si ∪ {t}) in G′ has the same capacity, for 0 ≤ i ≤ k, and each of these k + 1
cuts is a mininimum s − t cut in G′.

Let f ′ denote a maximum s − t flow in G′. Obtain flow f from f ′ by ignoring flow
on the edges into t . Then f is a feasible flow in G that sends mi/rate(ti) flow to each
sink ti .

Lemma 5.28 Flow f and the prices found by the algorithm constitute an
equilibrium flow and prices.

proof We will show that flow f and the prices found satisfy all KKT condi-
tions.
� Since each of the cuts (Si, Si ∪ {t}), for 0 ≤ i < k is saturated in G′ by flow f ′,

each of the cuts c0, c1, . . . , ck−1 is saturated by f . Hence, all edges having nonzero
prices must be saturated.

� The cost of the cheapest path to terminal t ′ ∈ T is rate(t ′). Clearly, every flow to t ′

uses a path of this cost.
� Since the flow sent to t ′ ∈ T is mi/rate(t ′), the money of each terminal is fully

spent.

Below we give a strongly polynomial time subroutine for computing the next cut in
each iteration.

5.14.1 Finding the Next Cut

Let (S, S) be the cut in G, whose price is being raised in the current iteration and let c

be the set of edges in this cut and f its capacity. Let T ′ denote the set of sinks in S. Let
p′ denote the sum of the prices assigned to all cuts found so far in the algorithm (this
is a constant for the purposes of this subroutine) and let p denote the price assigned to
edges in c. The cut (S, S) satisfies the following conditions:

� It is a maximal minimum cut separating T ′ from s.
� At p = 0, every cut (U,U), with S ⊆ U , is oversaturated.

Let p∗ be the smallest value of p at which there is a cut (U, U), with S ⊂ U , in G

such that the difference in the capacities of (S, S) and (U, U) is precisely equal to the
flow demanded by sinks in U − S at prices p∗; moreover, (U, U) is the maximal such
cut. Below we give a strongly polynomial algorithm for finding p∗ and (U, U).

Define graph G′ by adding a new sink node t to G and edges (ti , t) for each sink
ti ∈ S. Define the capacity of edge (ti , t) to be mi/(p′ + p) where mi is the money of
sink ti (see Figure 5.7). As in Section 5.14 we will denote V − S by S even in G′. The
proof of the following lemma is obvious.

P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 July 15, 2007 11:45

algorithm for single-source multiple-sink markets 129

Cut(S, S)

priced at p

s

Cut(U, U)

t5 t2 t3 t7 ti

mi

p p

t

Figure 5.7. Graph G′.

Lemma 5.29 At the start of the current iteration, (S, S ∪ {t}) is a maximal
minimum s − t cut in G′. p∗ is the smallest value of p at which a new minimum
s − t cut appears in G′. (U, U ∪ {t}) is the maximal minimum s − t cut in G′ at
price p∗.

For any cut C in G′, let capp(C) denote its capacity, assuming that the prices of edges
in c is p. For p ≥ 0, define cut(p) to be the maximal s − t min-cut in G′ assuming
that the price assigned to edges in c is p. For cut (A, A ∪ {t}), A ⊆ V , let price(A, A ∪
{t}) denote the smallest price that needs to be assigned to edges in c to ensure that
capp(A, A ∪ {t}) = f ; i.e., (A, A ∪ {t}) is also a min s − t cut in G′; if (A, A ∪ {t})
cannot be made a minimum s − t cut for any price p then price(A, A ∪ {t}) = ∞.
Clearly, price(A, A ∪ {t}) ≥ p∗. Observe that determining price(A, A ∪ {t}) involves
simply solving an equation in which p is unknown.

Lemma 5.30 Suppose p > p∗. Let cut(p) = (A, A ∪ {t}), where A �= U . Let
price(A, A ∪ {t}) = q and cut(q) = (B, B ∪ {t}). Then B ⊂ A.

proof Since we have assumed that A �= U , it must be the case that
capp(A, A ∪ {t}) > f . Therefore, q = price(A, A ∪ {t}) < p. Let cA and cB de-
note the capacities of (A, A ∪ {t}) and (B, B ∪ {t}) at price p = 0. Let mA and
mB denote the money possessed by sinks in (A − S) and (B − S), respectively.

Since (A, A ∪ {t}) is a maximal s − t mincut at price p,

cA + mA

p
< cB + mB

p
.

P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 July 15, 2007 11:45

130 combinatorial algorithms for market equilibria

Subroutine
Inputs: Cut (S, S) in G whose price is being raised in the current iteration.
Output: Price p∗ and next cut (U, U).

(i) C ← (V, t)
(ii) p ← price(C)

(iii) While cut(p) �= C do:

(a) C ← cut(p)
(b) p ← price(C)

(iv) Output (C,p)

Figure 5.8. Subroutine for finding next cut.

Since (B, B ∪ {t}) is a maximal s − t mincut at price q,

cB + mB

q
< cA + mA

q
.

The two together imply

mB − mA

q
< cA − cB <

mB − mA

p
.

First suppose that A ⊂ B. Clearly mA ≤ mB . But this contradicts the last
inequality since q < p.

Next, suppose that A and B cross. By the last inequality above, there must be a
price, r , such that q < r < p at which capr (A, A ∪ {t}) = capr (B, B ∪ {t}) = g,
say. By the submodularity of cuts, one of the following must hold:

(i) capr ((A ∩ B), (A ∩ B) ∪ {t}) ≤ g. Since the money possessed by sinks in (A ∩
B) − S is at most mB , at price q, capq((A ∩ B), (A ∩ B){t}) < capq(B,B ∪ {t}).
This contradicts the fact that (B,B ∪ {t}) is a min-cut at price q.

(ii) capr ((A ∪ B), (A ∪ B) ∪ {t}) ≤ g. Since the money possessed by sinks in (A ∪
B) − S is at least mA, at price p, capp((A ∪ B), (A ∪ B) ∪ {t}) < capp(A,A ∪
{t}). This contradicts the fact that (A,A ∪ {t}) is a min-cut at price p.

Hence we get that B ⊂ A.

Lemma 5.31 Subroutine 5.8 terminates with the cut (U, U ∪ {t}) and price p∗

in at most r max-flow computations, where r is the number of sinks.

proof As long as p > p∗, by Lemma 5.30, the algorithm keeps finding smaller
and smaller cuts, containing fewer sinks on the s side. Therefore, in at most r

iterations, it must arrive at a cut such that p = p∗. Since cut(p∗) = (U, U ∪ {t}),
the next cut it considers is (U, U ∪ {t}). Since price(U, U ∪ {t}) = p∗, at this
point the algorithm terminates.

P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 July 15, 2007 11:45

discussion and open problems 131

Theorem 5.32 The algorithm given in Section 5.14 finds equilibrium edge
prices and flows using O(r2) max-flow computations, where r is the number of
sinks.

proof Clearly, the number of sinks trapped in the sets S0 ⊂ S1 ⊂ · · · ⊂ Sk

keeps increasing and therefore, the number of iterations k ≤ r . The running time
for each iteration is dominated by the time taken by subroutine (5.8), which
by Lemma 5.31 is r max-flow computations. Hence the total time taken by the
algorithm is O(r2) max-flow computations. By Lemma 5.28 the flow and prices
found by the algorithm are equilibrium flow and prices.

5.15 Discussion and Open Problems

Linear utility functions provided us with perhaps the easiest algorithmic questions that
helped us commence our algorithmic study of market equilibria. However, such func-
tions are much too restrictive to be useful. Concave utility functions are considered
especially useful in economics because they model the important condition of decreas-
ing marginal utilities as a function of the amount of good obtained. Furthermore, if
the utility functions are strictly concave, at any given prices, there is a unique optimal
bundle of goods for each agent. This leads to the following remarkable communication
complexity fact: In such a market, it suffices to simply announce equilibrium prices –
then, all agents can individually compute and buy their optimal bundles and the market
clears!

On the other hand, concave utility functions, even if they are additively separable
over the goods, are not easy to deal with algorithmically. In fact, obtaining a polynomial
time algorithm for such functions is a premier open problem today. For the case of
linear functions, the approach used in Section 5.8 – of starting with very low prices and
gradually raising them until the equilibrium is reached – is made possible by the prop-
erty of weak gross substitutability. This property holds for a utility function if on raising
the price of one good, the demand of another good cannot go down. As a consequence
of this property, the need to decrease the price of the second good does not arise.

Concave utility functions do not satisfy weak gross substitutability. Exercises 5.5
and 5.6 outline an approach that attempts to finesse this difficulty for the case of
piecewise-linear, concave functions. Does this approach lead to an efficient algorithm
for computing, either exactly or approximately, equilibrium prices for such functions?
If so, one can handle a concave function by approximating it with a piecewise-linear,
concave function. Alternatively, can one show that finding an equilibrium for such
utility functions is PPAD-hard?

Considering the properties of the linear case of Fisher’s model established in
Theorem 5.1, one wonders whether its equilibrium allocations can be captured via
a linear program. Resolving this, positively or negatively, seems an exciting problem.
Another question remaining open is whether there is a strongly polynomial algorithm
for computing equilibrium prices for this case. Finally, we would like to point to the
numerous questions remaining open for gaining a deeper algorithmic understanding of
Eisenberg–Gale markets (Jain and Vazirani, 2006).

P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 July 15, 2007 11:45

132 combinatorial algorithms for market equilibria

Acknowledgments

I wish to thank Deeparnab Chakrabarty, Nikhil Devanur, Sergei Izmalkov, Kamal Jain
and Kasturi Vardarajan for valuable discussions and comments on the writeup.

Bibliography

K. Arrow and G. Debreu. Existence of an equilibrium for a competitive economy. Econometrica,
22:265–290, 1954.

W.C. Brainard and H.E. Scarf. How to compute equilibrium prices in 1891. Cowles Foundation
Discussion Paper, (1270) 2000.

X. Deng, C. Papadimitriou, and S. Safra. On the complexity of equilibria. In Proc. ACM Symp. on
Theor. Comp., 2002.

N. Devanur, C.H. Papadimitriou, A. Saberi, and V.V. Vazirani. Market equilibrium via a primal-dual-
type algorithm. In Proc. IEEE Annual Symp. Fdns. of Comp. Sci., 2002. To appear in J. ACM.
Journal version available at: http://www-static.cc.gatech.edu/vazirani/market.ps.

N. Devanur and V.V. Vazirani. The spending constraint model for market equilibrium: Algorithmic,
existence and uniqueness results. In Proc. 36th Symp. on Theory of Computing, 2004.

J. Edmonds. Maximum matching and a polyhedron with 0,1-vertices. J. Res. Natl. Bur. Standards,
69:125–130, 1965.

J. Edmonds. Optimum branchings. J. Res. Natl. Bur. Standards, Section B, 71:233–240, 1967.
E. Eisenberg and D. Gale. Consensus of subjective probabilities: The Pari-Mutuel method. Annals

Math. Stat., 30:165–168, 1959.
S. Floyd and V. Jacobson. Random early detection gateways for congestion avoidance. IEEE/ACM

Trans. Networking, 1(1):397–413, 1993.
R. Garg and S. Kapoor. Auction algorithms for market equilibrium. In Proc. 36th Symp. on Theory

of Computing, 2004.
V. Jacobson. Congestion avoidance and control. In ACM SIGCOMM, pp. 314–329, 1988.
K. Jain and V.V. Vazirani. Eisenberg-gale markets: Algorithms and structural properties. In Proc.

39th Symp. on Theory of Computing, 2007.
F.P. Kelly. Charging and rate control for elastic traffic. Euro. Trans. on Telecomm., 8:33–37, 1997.
F.P. Kelly, A.K. Maulloo, and D.K.H. Tan. Rate control in communication networks. J. Oper. Res.

Soc., 49:237–252, 1998.
F.P. Kelly and V.V. Vazirani. Rate control as a market equilibrium. Unpublished manuscript 2002.

Available at: http://www-static.cc.gatech.edu/vazirani/KV.pdf.
S. Low and D. Lapsley. Optimization flow control, 1: basic algorithm and convergence. IEEE/ACM

Trans. Networking, 7(6):861–874, 1999.
C.S.J.A. Nash-Williams. Edge-disjoint spanning trees of finite graphs. J. London Math. Soc., 36:445–

450, 1961.
H. Scarf. The Computation of Economic Equilibria (with collaboration of T. Hansen). Cowles Foun-

dation Monograph No. 24., New Haven: Yale University Press, 1973.
W.T. Tutte. On the problem of decomposing a graph into n connected factors. J. London Math. Soc.,

36:221–230, 1961.
V.V. Vazirani. Spending constraint utilities, with applications to the Adwords market. Submitted to

Math. of Operations Research, 2006.
L. Walras. Éléments d’économie politique pure ou théorie de la richesse sociale (Elements of Pure

Economics, or the theory of social wealth). Lausanne, Paris, 1874. (1899, 4th ed.; 1926, rev ed.,
1954, Engl. transl.).

P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 July 15, 2007 11:45

exercises 133

J. Wang, L. Li, S.H. Low, and J.C. Doyle. Cross-layer optimization in TCP/IP networks. IEEE/ACM
Trans. Networking, 13:582–268, 2005.

Exercises

5.1 Give a strongly polynomial algorithm for Fisher’s linear case under the assumption
that all ui j ’s are 0/1 (the algorithm given in Section 5.8 is not strongly polynomial).

5.2 Let us extend Fisher’s linear model to assume that buyers have utility for money
(Vazirani, 2006). Let ui0 denote the utility accrued by buyer i for one unit of money.
Now, each buyer’s optimal bundle can also include money—effectively this is part
of their own money which they prefer not to spend at current prices. The notion of
equilibrium also generalizes—all goods need to be sold and all money needs to be
either spent or returned as part of optimal bundles. Extend the algorithm given in
Section 5.8 to this situation, still maintaining its polynomial running time.

5.3 Let us define a new class of utility functions, spending constraint utility functions
for Fisher’s model (Vazirani, 2006). As before, let A and B be the set of goods and
buyers, respectively. For i ∈ B and j ∈ A, let r i

j : [0, e(i)] → R+ be the rate function
of buyer i for good j ; it specifies the rate at which i derives utility per unit of j
received, as a function of the amount of her budget spent on j . If the price of j is
fixed at pj per unit amount of j , then the function r i

j /pj gives the rate at which i
derives utility per dollar spent, as a function of the amount of her budget spent on
j .

Relative to prices p for the goods, give efficient algorithms for

(a) computing buyer i ’s optimal bundle,
(b) determining if p are equilibrium prices, and
(c) computing equilibrium allocations if p are equilibrium prices.

5.4 Prove that equilibrium prices are unique for the model of Exercise 5.3.

5.5 It turns out that there is a polynomial time algorithm for computing equilibrium
prices and allocations for the utility functions defined in Exercise 5.3 (Devanur and
Vazirani, 2004; Vazirani, 2006). The following is an attempt to use this algorithm
to derive an algorithm for computing equilibrium prices for the case of piecewise-
linear, concave utility functions for Fisher’s model.

Let fi j be the piecewise-linear, concave utility function of buyer i for good j ; fi j

is a function of xi j , the allocation of good j to buyer i . Let p be any prices of goods
that sum up to the total money possessed by buyers (as before, we will assume that
there is a unit amount of each good in the market).

Let us obtain spending constraint utility functions from the fi j ’s as follows. Let
gi j be the derivative of fi j ; clearly, gi j is a decreasing step function. Define

hi j (yi j) = g
(

yi j

pi j

)
,

where yi j denotes the amount of money spent by i on good j . Observe that function
hi j gives the rate at which i derives utility per unit of j received as a function of the
amount of money spent on j . Hence hi j is precisely a spending constraint utility
function. Let us run the algorithm mentioned above on these functions hi j ’s to obtain
equilibrium prices, say p′.

P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 July 15, 2007 11:45

134 combinatorial algorithms for market equilibria

Show that p = p′ iff prices p are equilibrium prices for the piecewise-linear, con-
cave utility functions fi j ’s (equilibrium prices for piecewise-linear, concave utility
functions need not be unique).

5.6 Open problem (Devanur and Vazirani, 2004): Consider the process given in Exercise
5.3, which, given starting prices p, finds new prices p′. By the assertion made in
Exercise 5.3, the fixed points of this process are precisely equilibrium prices for the
piecewise-linear, concave utility functions fi j ’s.

Does this procedure converge to a fixed point, and if so, how fast? If it does
not converge fast enough, does it converge quickly to an approximate fixed point,
which may be used to obtain approximate equilibrium prices?

5.7 Consider the single-source multiple-sink market for which a strongly polynomial
algorithm is given in Section 5.14. Obtain simpler algorithms for the case that the
underlying graph is a path or a tree.

5.8 Observe that the algorithm given in Section 5.14 for Market 1 defined in Section
5.13 uses the max-flow min-cut theorem critically (Jain and Vazirani, 2006). Obtain
a strongly polynomial algorithm for Market 3 using the following max–min theorem.

For a partition V1, . . . , Vk, k ≥ 2 of the vertices of an undirected graph G, let C
be the capacity of edges whose end points are in different parts. Let us define the
edge-tenacity of this partition to be C/(k − 1), and let us define the edge-tenacity
of G to be the minimum edge-tenacity over all partitions. Nash-William (1961) and
Tutte (1961) proved that the maximum fractional packing of spanning trees in G is
exactly equal to its edge-tenacity.

5.9 Next consider Market 2 defined in Section 5.13. For the case |A| = 1, a polynomial
time algorithm follows from the following max–min theorem due to Edmonds (1967).

Let G = (V , E) be a directed graph with edge capacities specified and source
s ∈ V . The maximum number of branchings rooted out of s that can be packed in
G equals minv∈V c(v), where c(v) is the capacity of a minimum s − v cut.

Next assume that there are two agents, s1, s2 ∈ V . Derive a strongly polynomial
algorithm for this market using the following fact from Jain and Vazirani (2006). Let
F1 and F2 be capacities of a minimum s1 − s2 and s2 − s1 cut, respectively. Let F be
minv∈V−{s1,s2} f ′(v), where f ′(v) is the capacity of a minimum cut separating v from
s1 and s2. Then:

(a) The maximum number of branchings, rooted at s1 and s2, that can be packed in
G is exactly min{F1 + F2, F }.

(b) Let f1 and f2 be two nonnegative real numbers such that f1 ≤ F1, f2 ≤ F2, and
f1 + f2 ≤ F . Then there exists a packing of branchings in G with f1 of them
rooted at s1 and f2 of them rooted at s2.

